One point extensions of linear quivers and quadratic forms
نویسندگان
چکیده
منابع مشابه
One-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملLinear-quadratic Control and Quadratic Differential Forms
We consider the infinite time linear-quadratic control problem from a behavioral point of view. The performance functional is the integral of a quadratic differential form. A characterization of the stationary trajectories and of the local minima with respect to (left) compact support variations, as well as their relation to stability, are obtained. Finally, several theorems are derived that de...
متن کاملApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملAbout One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions
In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...
متن کاملLinear-quadratic control and quadratic differential forms for multidimensional behaviors
This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear quadratic control problem where the performance functional is the integral of a quadratic differential form. We look for characterizations of the set of stationary trajectories and of the set of local minimal traj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1989
ISSN: 0022-4049
DOI: 10.1016/0022-4049(89)90120-5